Using Categorical Attributes for Clustering

نویسندگان

  • Avli Saxena
  • Manoj Singh
چکیده

The traditional clustering algorithms focused on clustering numeric data by exploiting the inherent geometric properties of the dataset for calculating distance functions between the points to be clustered. The distance based approach did not fit into clustering real life data containing categorical values. The focus of research then shifted to clustering such data and various categorical clustering algorithms are proposed till date. The clustering of categorical data turns complex because of the absence of a natural order on the individual domains, high dimensionality of data and the existence of subspace clusters in the categorical datasets. This survey focuses on the shortcomings of categorical data and the recent developments in the direction of using data with categorical attributes for clustering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and Categorical Attributes Data Clustering Using K- Modes and Fuzzy K-Modes

Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a general clustering ...

متن کامل

Model-based multidimensional clustering of categorical data

Existing models for cluster analysis typically consist of a number of attributes that describe the objects to be partitioned and one single latent variable that represents the clusters to be identified. When one analyzes data using such a model, one is looking for one way to cluster data that is jointly defined by all the attributes. In other words, one performs unidimensional clustering. This ...

متن کامل

A Unified Metric for Categorical and Numerical Attributes in Data Clustering

Most of the existing clustering approaches concentrate on purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a unified metric for dat...

متن کامل

A Fast K-prototypes Algorithm Using Partial Distance Computation

The k-means is one of the most popular and widely used clustering algorithm, however, it is limited to only numeric data. The k-prototypes algorithm is one of the famous algorithms for dealing with both numeric and categorical data. However, there have been no studies to accelerate k-prototypes algorithm. In this paper, we propose a new fast k-prototypes algorithm that gives the same answer as ...

متن کامل

Context-Based Distance Learning for Categorical Data Clustering

Clustering data described by categorical attributes is a challenging task in data mining applications. Unlike numerical attributes, it is difficult to define a distance between pairs of values of the same categorical attribute, since they are not ordered. In this paper, we propose a method to learn a context-based distance for categorical attributes. The key intuition of this work is that the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016